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Abstract

The structure of the magnetic field perturbations due to non-axisymmetric field-aligned currents

in the tokamak scrape-off layer (SOL) are analytically calculated near the X-point. Part I [I.

Joseph, et al., submitted to Phys. Plasmas (2008)] demonstrated that biasing divertor target

plates in a toroidally asymmetric fashion can generate an appreciable toroidally asymmetric parallel

current density in the SOL along the separatrix. Here, the magnetic field perturbation caused

by a SOL current channel of finite width and step-wise constant amplitude at the target plate

is derived. Flux expansion amplifies the magnetic perturbation near the X-point, while phase

interference causes the SOL amplitude to be reduced at large toroidal mode number. Far enough

from the current channel, the magnetic field can be approximated as arising from a surface current

near the separatrix with differing amplitudes in the SOL and the divertor leg. The perturbation

spectrum and resonant components of this field are computed analytically asymptotically close to

the separatrix in magnetic flux coordinates. The size of the stochastic layer due to the applied

perturbation that would result without self-consistent plasma shielding is also estimated. If enough

resonant field is generated, control of the edge pressure gradient may allow stabilization of edge

localized modes.
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I. INTRODUCTION

Driving toroidally asymmetric current through the scrape-off layer (SOL) of a diverted

tokamak has been proposed [1–4] as a potentially useful tool for mitigating the large heat

fluxes that are delivered to the divertor target plates of a fusion reactor [5–7]. Toroidally

asymmetric electrostatic fields were originally proposed to create convection cells in the

divertor to spread turbulent heat flux [1–3]. Ref. [4] proposes driving asymmetric SOL

current to suppress edge localized modes (ELMs) which rapidly deliver unacceptable levels

of impulsive heat flux during high-performance operation [6–8]. SOL currents are also known

to be internally generated by magnetohydrodynamic (MHD) instabilities such as ELMs and

tearing modes and have been measured in Refs. [9–12]. Important questions arise for

understanding the magnetic effects of the toroidally asymmetric SOL current: What is the

spatial structure of the driven magnetic perturbation? What is the spectral structure of

the perturbation field in magnetic coordinates? Are the spectral components sufficiently

large to drive a region of magnetic stochasticity or enhance edge neoclassical transport? In

this article, steps toward answering these questions are taken by analytically describing the

spatial and spectral structure of magnetic field perturbations generated by the SOL current.

The stability of large (Type-I) ELMs is highly sensitive to the structure of both the

parallel current and pressure gradient instability drives at the edge of an H-mode tokamak

[13, 14]. Reduction of the pressure gradient can be achieved by breaking the toroidal symme-

try of the magnetic field in order to enhance transport. The technique of applying resonant

magnetic perturbations (RMP) to the tokamak edge has been shown to significantly impact

H-mode particle balance [15–19], causing the plasma density and the edge pressure gradient

to be reduced to a level below the ELM stability limit [17, 18]. Experimentally, the critical

requirement is that, relative to the main toroidal field Bt, the flux surface averaged Fourier

component of the perturbation field that resonates with the pitch of the field lines at the

plasma edge must satisfy B̃mn > 10−4Bt. For the pitch resonant component, m = qn where

q is the safety factor and m/n are the poloidal/toroidal mode numbers. The first hypothesis

was that magnetic field line stochasticity could explain the results [15, 16] and this has been

taken as guide for recent the design studies [20, 21]. However, this appears inconsistent

with the lack of an observable enhancement to thermal conduction [18, 22, 23] and is in

conflict with the intrinsic tearing stability of the rotating plasma [24–26]. Enhanced neo-
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classical transport may dominate when self-consistent plasma response effects are correctly

accounted for [27–29].

This article is the second part of a series of two articles analyzing the possibility that

asymmetric SOL currents can be used to control ELMs. In Part I, a qualitative upper limit

for the RMP amplitude was determined from the total amount of parallel current that can

be driven across the target plate. Because the current density is assumed to travel within a

relatively thin layer near the plasma surface, an estimate of the total surface current density

across the layer leads to a useful estimate for the characteristic magnetic field that can be

generated. For observation points that are closer to the current channel than the toroidal or

poloidal wavelength, the field produced by the surface current K can still be estimated from

the discontinuity in the tangential field [B] = 4πK/c, where c represents the speed of light.

If the target is biased to potentials of order the electron temperature, the current density

that can be driven will be limited by the ion saturation current density Jsat. The width

of the parallel particle flux at the target plate ∆r gives an upper limit for the maximum

surface current density that can be drawn Ksat = Jsat∆r. The corresponding magnetic

field perturbation amplitude near the target plate is then B̃sat = [B]/2 = 2πKsat/c. Part I

estimated that for ITER the total parallel ion saturation current across the target 102− 103

A/cm is large enough to produced characteristic fields of 102 − 103 G. Such fields exceed

the RMP threshold by factors of 10− 100.

Part I also developed a more quantitative analysis of the spatial structure of the current

density. Flux expansion causes the surface current to become large near the X-point. How-

ever, the shearing of field lines as they pass the X-point causes the coherent perturbation to

be reduced in the SOL. Radially across the divertor leg the current density is in phase, but

radially across the SOL rapid oscillations due to phase shearing near the separatrix reduce

the amplitude of the net surface current. The efficiency of the SOL current drive εsol was

measured by the ratio between the net SOL surface current density to the maximum density

possible, given the maximum value at the target Ksat and the intrinsic dependence on flux

expansion. The efficiency is sensitive to toroidal mode number n and the geometry of the

divertor and the phasing of the biased target plate. At low n, a useful range of efficiencies

can be achieved by optimizing the biasing geometry.
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A more accurate estimate for the average field in the SOL is given by

B̃sol = εsolB̃sat. (1)

A similar definition allows one to define an efficiency along the divertor leg εleg and the

magnetic field along the leg B̃leg = εlegB̃sat. Part I claimed that this also gives an order of

magnitude estimate for the flux surface averaged RMP in the SOL, even though this seems

to ignore the spatial variation of the perturbation and the relative weight of the resonant

spectral component that is assumed to be necessary for ELM control. This article, Part II,

provides the justification for and qualifications of that claim by determining a more accurate

expression for the RMP amplitude.

In this article, the spatial structure of the magnetic field perturbation near the X-point

is used to develop an approximation for the spectrum that is valid near the separatrix.

Pioneering approaches to determination of the resonant spectrum [30–32] have shown that

the field must be specified over the entire separatrix. A novel feature of the SOL perturbation

is that it is largest near the X-point, and this allows one to obtain an expression that depends

weakly on the field far from the X-point. It is shown that the SOL current-generated

magnetic perturbation has a relatively large resonant spectral component as long as the

SOL current, which propagates along field lines in the scrape-off layer, is well-aligned with

the field lines inside the separatrix. The actual RMP amplitude varies radially from a small

value in the core to a large value at the edge. Thus, the claim is really that the estimate in

Eq. 1 is valid for a certain range of flux surfaces sufficiently close to the separatrix.

The notation, geometry and the structure of the SOL current are described in detail in

Part I (Ref. [4]) and briefly reviewed in Sec. II of this article. The central assumption is

that that the parallel current that is produced will flow along the field lines for a substantial

distance from the divertor target plate because dissipative effects are relatively weak [2]. The

spatial structure of the resulting vector potential and magnetic field is analytically derived

and computed in Sec. III. Outside of the current channel, the field is well described by

the effective surface current flowing along the separatrix. The “far-field” result derived in

Sec. III B is the essential ingredient needed to evaluate the spectrum and limiting forms

for the magnetic field are explicitly given in Sec. III C. Section III D shows that the vector

potential of a true surface current localized to a thin channel near a single flux surface has

a very simple form near the X-point if the target plate is sufficiently far away. Integrating

4



this result across flux surfaces, as in Sec. III E, also yields the vector potential generated by

a current density channel of arbitrary thickness in closed form. Just outside of the current

channel, the SOL field has the same amplitude determined by the efficiency εsol in Part

I. The Fourier spectrum of the field is computed in magnetic coordinates in Section IV.

The spectrum is calculated asymptotically, both for a poloidally localized perturbation in

Sec. IV B and for the SOL current perturbation in Sec. IV C. The quasilinear stochastic

transport that would be generated in the absence of shielding effects is estimated in Sec. V.

Finally, the results are discussed and summarized in Sec. VI.

II. DIVERTOR LEG & SOL CURRENTS

The conventions for notation and divertor geometry are substantially the same as in Part

I. The divertor region of a large aspect ratio tokamak is considered with the coordinate

system shown in Fig. 1. The x-axis lies along the outer divertor leg and the y-axis lies along

the outer SOL branch of the the separatrix. The toroidal coordinate ζ is directed out of the

page for a right-handed coordinate system

Near the X-point, the field line motion is entirely determined by the poloidal flux function

Ψp = RB′pxy. The two constants of the field line motion can be taken to be a normalized

poloidal flux near the X-point and the field line label

ψ = xy ζ0 = ζ − q∗ log
√
|y/x|. (2)

The dimensionless parameter

q∗ = Bt/RB
′
p (3)

regulates the ratio of toroidal to poloidal motion near the X-point. The poloidal coordinate

that is canonically conjugate to ψ is

θ = log
√
|y/x|, (4)

in the sense that (∇ψ × ∇θ) · R∇ζ = 1. This coordinate provides a simple description of

the field line motion since dζ/dθ = q∗, but ∇θ becomes nearly degenerate with ∇ψ far from

the X-point. The variable that is orthogonal to ψ is the conformal conjugate

τ = (y2 − x2)/2. (5)
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The parallel current density is must larger than the other components, so that charge

continuity implies 0 = ∇ · J ' B · ∇J‖/B. Hence, the parallel current density within a flux

tube J‖/B must essentially be constant along a magnetic field line. Assuming that the aspect

ratio is large, one can approximate B · ∇J‖ ' 0. Thus, the parallel current density can only

depend on the two constants of the field line motion in Eq. 2. Because the current density

must be periodic in ζ and therefore ζ0, it can be Fourier expanded in toroidal harmonics n.

As in Part I, the Fourier harmonics are treated individually, so that one can assume

J‖(ψ, ζ0) = J(ψ) cos [nζ0 + χ(ψ)]. (6)

In this article, the phase of the current density will be redefined in a manner that allows

one to treat the divertor leg and SOL simultaneously. Introduce the parameters kx, ky and

χ so that the perturbation phase is always written as either

ϕ(x) = nζ +m∗ log |kxx|+ χ (7a)

as a function of x, or

ϕ(y) = nζ −m∗ log |kyy|+ χ (7b)

as a function of y. One can choose χ to have the same value in both expressions in Eq. 7

by absorbing any ψ dependence into the parameters kx, ky. Then, since xy = ψ, the two

parameters must be related via kxky = 1/|ψ|.

The phase structure of J‖ in the SOL is sensitive to the phasing of the bias at the target

plate. Two limiting cases for orthogonal target plates with radially constant target plate

phase profiles were identified in Part I. The conceptual limits of “long” vs. “short” divertor

legs naturally arises when considering the divertor leg length ` relative to the distance of

the current channel δr from the strike point. Part I found that the SOL current drive

efficiency is enhanced for short legs, so it can be useful to generate this phasing. However,

the terminology only strictly applies for orthogonal target plates, and the two extremes can

be continuously connected by varying the angle of the plates with respect to the magnetic

field. Although ITER has relatively long legs, the inwardly-inclined non-orthogonal target

plates imply that the outer SOL may be closer to the short leg phasing. Either case may

also be achievable in a flexible biasing scenario by varying the phasing on the target plate

radially as well as toroidally.
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The discussion in this article technically focuses on the case of “long” legs (Fig. 4(a) of

Ref. [4]). This case provides a natural simplification in that the fields local to the target

plate can be neglected. In this case, the target plate runs along y perpendicular to the

divertor leg at x = `. The choice kx = 1/` implies that χ is the phase at the target plate

and that ky = |`/ψ|. Many of the results in this article can also be used “short” divertor

legs (Fig. 4(b) of Ref. [4]). In the limiting case of zero divertor leg length, the target plate

runs radially along the half-line x = y > 0. In this case, the phase is constant along the

line x = y and the choice kx = ky = 1/
√
|ψ| implies that χ is the phase at the target. Our

conventions allow this phasing to be described, but additional perturbation fields considered

in Appendix C must also be taken into account.

The surface current is defined by integrating the current density over the distance or-

thogonal to flux surfaces:

K‖(τ, ζ) =

∫
J‖(ψ, τ, ζ)dψ/|∇ψ|. (8)

Flux expansion causes the surface current to increase near the X-point and decrease further

away since |∇ψ| = r. Assume that distance of the current channel from the X-point at the

target is rt = ` for long legs or rt =
√

2δψ for short legs. The surface current is largest at the

distance of closest approach to the X-point rX =
√

2δψ =
√

2`δr and yields an amplification

of
√
`/2δr for the long legs. This directly corresponds to the greater width that current can

be driven over the target plate for short legs.

Part I assumed that for ITER, where ` = 100 cm, the e-folding length for Jsat near the

strike point is λ ' 2 − 3 cm. Using this as an estimate of δr yields rX = 20 − 25 cm and

yields an X-point enhancement of 6 − 7. The surface current is weakest at the midplane

where |∇ψ| = κa where κ is the elongation and a is the minor radius at the outer midplane.

For ITER, where a = 200 cm and the cross-sectional area is S = 21.9 m2, we estimate

that κ ' S/πa2 = 1.74 which yields a reduction by a factor of `/κa = 1/3.5. Thus, the

characteristic estimate B̃sol in Eq. 1 provides an estimate of the average between these two

extremes.

The current drive efficiency in Eq. 1 is defined by the ratio of amplitude of the net surface

current density to the maximum value that can be generated at the target. The definition

for the SOL is thus

εsol = |rK‖|/rtKsat, (9)
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as τ → ∞ and the amplitude is the maximum value of the current over toroidal angle ζ.

The same definition is given for the divertor leg efficiency εleg as τ → −∞.

III. NEAR X-POINT PERTURBATION

A. Green’s function approach

The spatial structure of the magnetic perturbation is determined by the static Maxwell’s

equation ∇×B = 4πJ/c, which can be solved for the vector potential ∇×A = B. Because

the poloidal field vanishes at the X-point, the weak poloidal component of the parallel current

can be neglected through first order in r/R. This implies that the “slab” approximation

∇2
⊥A‖ = −4πJ‖/c, is also accurate through first order. The solution for the vector potential

in slab geometry can formally be written as

Ã‖(x) = −
∫
d2x′ log |x− x′|2J‖(x′)/c. (10)

For observation points that lie at distances beyond the thickness of the area over which

the current density is large, the effect of the detailed radial structure of the current distri-

bution will be smoothed by the Green’s function of the Laplace operator. In this case, the

approximation that the current lies on a surface of constant δψ will yield sufficient accuracy.

For the case of a surface current, the solution becomes

Ã‖(x) = −
∫
d`p log |x− x′(`p)|2K‖(`p)/c, (11)

where `p is the poloidal path length along the surface at constant ζ. When parameterized

as a function of y along the separatrix or of x along the divertor leg, the integrand takes the

form
∫
K‖d`p =

∫
K‖rdy/y =

∫
K‖rdx/x.

The conformal invariance of the Laplace operator causes the slab Green’s function to

simplify in the complex coordinates z = x+ iy and z̄ = x− iy. In this article, z will not be

used as a third coordinate.

B. Far-field vector potential

The magnetic field generated along the separatrix has a robust form for a wide variety

of configurations, as long as the observation point is not close enough to the separatrix to
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observe the detailed structure of the current source. In this case, the volume current density

can be approximated by a surface current density located at position δψ. When r >>
√

2δψ,

even the detailed path of the surface current near the X-point can be neglected because the

excursion of the path of the surface current from the x and y axes will be negligible, and

the integral in Eq. 11 will break into two integrals over the axes of Fig. 1. Thus, the vector

potential can be written as

Ã‖ = Ãsol + Ãleg, (12)

where the first term Ãsol is the contribution from the SOL (upper branch), and the second

term Ãleg is the contribution from the divertor leg (lower branch). If the observation point is

still close enough to the current source, then the limits of integration can be sent to infinity.

Physically, this neglects the curvature of the flux surfaces, as well as the precise way in which

the current is delivered from the external world to the plasma region.

Since the SOL and leg contributions take nearly identical forms, we first treat the SOL

term. The required integral (Eq. 11) can be written as

Ãsol =
B̃solrt

2π
Re ei(nζ+χ)

[
Asolm∗(z) +Asolm∗(z̄)

]
(13a)

Asolm∗(z) = −
∫ ∞

0

dy′

y′
(kyy

′)
−im∗ log (y′ + iz) (13b)

where Re denotes the real part and B̃sol = 2πεsolKsol/c is the characteristic SOL field

strength. Equation 13b can be integrated by parts to find the more tractable form

Asolm∗(z) = −
∫ ∞

0

dy′

im∗
(kyy

′)
−im∗ (y′ + iz)−1. (13c)

However, this is only true if one neglects the total derivative term that should arise to give

a contribution at the endpoints at 0 and∞ (and treated explicitly in Appendix C). For the

infinite endpoint, such terms lead to a negligible constant, just as in the case of a uniform

density along an infinite line. The more exact treatment of Sec. III D proves that, for each

surface in the current density channel, the term arising near the X-point exactly cancels a

corresponding contribution from the divertor leg. Thus, these terms must be actually be

neglected here.

The integral in Eq. 13c evaluates to

Asolm∗(z) =
π(ikyz)−im∗

m∗ sinhm∗π
. (14)
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It is evaluated by contour integration in the complex plane in Appendix A. The vector

potential perturbation generated by the SOL current is simply

Ãsol =
B̃solrt
m∗

Re
cos (ϕsol + im∗ϑsol)

sinhm∗π
(15a)

=
B̃solrt
m∗

coshm∗ϑsol
sinhm∗π

cosϕsol (15b)

and

ϑsol = arg (ikyz) (16a)

ϕsol = nζ −m∗ log |kyr|+ χ. (16b)

The divertor leg integral can similarly be written as

Ãleg =
B̃legrt

2π
Re ei(nζ+χ)

[
Alegm∗(z) +Alegm∗(z̄)

]
(17a)

Alegm∗(z) =

∫ ∞
0

dx′

x′
(kxx

′)
im∗ log (x′ − z) (17b)

= −
∫ ∞

0

dy′

im∗
(kxx

′)
im∗ (x′ − z)−1. (17c)

where B̃leg = 2πεlegKsat/c is the characteristic divertor field strength. The last line results

after again neglecting the total derivative term. These additional terms depend on the

way that the current paths are closed near the divertor target and can actually vanish in

certain situations. The case of a divertor leg of finite length is treated in Appendix C. The

contribution of the additional terms is small near the X-point and their contribution far

from the X-point is not highly resonant. Thus, these terms will be neglected here.

The integral Eq. 18 yields

Alegm∗(z) =
π(−kxz)im∗

m∗ sinhm∗π
. (18)

Thus, Ãleg can be written in the same manner as Eq. 15 with the new definitions

ϑleg = arg (−kxz) (19a)

ϕleg = nζ +m∗ log |kxr|+ χ. (19b)

Color contours of the vector potential are shown in Fig. 2(a) for the balanced case B̃leg =

B̃sol appropriate for a true surface current along the separatrix. The parameters are m∗ = 4.5

and `/δr = 25, where here ` is only needed to determine the phase to logarithmic accuracy.

Large amplitude oscillations along the separatrix are clearly seen. These oscillations are in

phase with closed field lines just across the separatrix.
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C. Far-field magnetic perturbation

Given the vector potential, the derivation of the magnetic perturbation is a routine cal-

culation. The steps are efficiently performed in complex coordinates in Appendix B. The

components of physical interest are the normal and the tangential components, which can

be written in the compact form

B̃ψ̂ − iB̃τ̂ = 2i(z̄/r)∂zA (20a)

B̃ψ̂ = B · ∇ψ/|∇ψ| = B · ∇ψ/r (20b)

B̃τ̂ = B · ∇τ/|∇τ | = B · ∇τ/r. (20c)

Color contours of the tangential and normal components of the corresponding magnetic

perturbation are shown in Fig. 2(b) and (c). Far enough away from the X-point, the

principal terms come from the SOL contribution to Eq. 12:

Bψ̂ − iBτ̂ =
B̃solrt

2ir

∑
ν=±n

eiν(ζ+iχ) z̄

z

(ikyz)−iνq∗

sinh νq∗π
(21a)

=
B̃solrt
r

sin (ϕ′sol + iϑsol)

sinhm∗π
(21b)

ϕ′sol = ϕsol + arg z̄/z. (21c)

The normal and tangential components evaluate to

B̃ψ̂ =
B̃solrt
r

coshm∗ϑsol
sinhm∗π

sinϕ′sol (22a)

B̃τ̂ = −B̃solrt
r

sinhm∗ϑsol
sinhm∗π

cosϕ′sol. (22b)

Along the upper branch of the separatrix that is close to the perturbation current (x = 0,

y > 0), far above the X-point (x << y), one finds the simple result that B̃ ∼ B̃solrt/r due

to the radial dependence of the surface current. Using the limit ϑsol → πx/|x| allows one to

find that

B̃ψ̂ →
B̃solrt
r

cothm∗π sinϕ′sol (23a)

B̃τ̂ → −
x

|x|
B̃solrt
r

cosϕ′sol. (23b)

The contribution to the other branches of the separatrix are much smaller at large m∗.

Along the opposite upper branch of the separatrix that is far from the SOL current (x < 0,
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y = 0), far above the X-point (−x >> y) where ϑsol → π/2, the result is

B̃ψ̂ →
B̃solrt
r

coshm∗π/2

sinhm∗π
sinϕ′sol (24a)

B̃τ̂ → −
B̃solrt
r

sinhm∗π/2

sinhm∗π
cosϕ′sol. (24b)

If m∗π/2 > 1, the perturbation field must increase rapidly from the far side to the near

side. The contribution to the lower branch along the divertor leg has the same magnitude

with opposite sign since ϑ→ −π/2. The contribution to the diametrically opposed branch

(x = 0, y < 0) is even smaller and scales like ∼ exp(−|m∗π|).

The contribution from the divertor leg can be expanded in a similar fashion. In this

case, the results for the outer upper separatrix (the outer SOL x = 0, y > 0) are similar

in magnitude to Eqs. 24 (a) and (b). For large m∗, this is a factor exp (−|m∗π/2|) smaller

than the corresponding contribution from the SOL current. Hence, along the separatrix,

the divertor leg field can be neglected at large m∗ if the SOL surface current drive is not

exponentially small. In fact, if the entire orthogonal target plate is biased at the same

phase radially, the SOL current drive is exponentially smaller. Interestingly enough, for

long divertor legs the SOL current is smaller by almost the same factor (Part I, Eq. 39) and

the SOL field strength only dominates by the factor
√
|2πm∗|. For short legs, the efficiency

at large m∗ is better and the product scales as
√
|πm∗| exp (|m∗π/4|). Thus, even at large

m∗ the SOL perturbation will dominate the divertor leg perturbation for short legs.

D. Near-field of a narrow current layer

The result can be written in a similar form even when the observation point is close

enough to the X-point to resolve the shape of the path of the surface current. In this

section, we treat the case of a a true surface current along the path δψ = xy. In this

case, the efficiencies are equal and the normalization field becomes B̃0 ≡ B̃sol = B̃leg. The

argument of the logarithm in Eq. 11 can be expanded as

(x′ − x)2 + (δψ/x′ − y)2 =

(x′ − z+)(x′ − z−)(x′ − z̄+)(x′ − z̄−)/x′2. (25)

where the z± are defined as the two solutions for x′ of the equation 0 = x′2 − zx′ + iδψ; i.e.

z± = z/2±
√

(z/2)2 − iδψ. (26)
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In this case, the total derivative term only contributes a negligible constant and Eq. 11

becomes

Ã‖ =
B̃0rt
2π

Re
∑
σ=±

ei(nζ+χ) [Am∗(zσ) +Am∗(z̄σ)] (27a)

where

Am∗(z) = −
∫ ∞

0

dx′

x′
(kxx

′)
im∗ log (x′ − z±) (27b)

=
π(−kxz±)im∗

m∗ sinhm∗π
. (27c)

The definitions

r± = |z±| (28a)

ϑ± = arg (−kxz±) (28b)

ϕ± = nζ +m∗ log |kxr±|+ χ (28c)

allow the result to be written as sum over terms in Eq. 15:

Ã‖ =
B̃0rt
m∗

∑
σ=±

coshm∗ϑσ
sinhm∗π

cosϕσ. (29)

When δψ < r2/4, the roots z± take the limits z and δψ/iz, and the limiting result is the

same as that of Eq. 15. Contours of the vector potential perturbation are plotted in Fig.

3(a). The additional terms are clearly small for distances of order 2
√
δψ away from the

location of the surface current as can be seen by comparing Fig. 2 to 3.

The magnetic field can be derived by differentiation, which results in a sum over the roots

z± of terms in the exact same form as Eqs. 21 and 22. These results are displayed as color

contours in Fig. 3(b) and (c).

E. Near-field of a wide current layer

For the case of a step-wise constant current amplitude driven at the target, one can again

derive an exact result for the perturbation to the vector potential in closed form. Here we

treat the case of long legs, and the results are used to construct the vector potential in Fig.

4 (a).
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One simply needs to integrate the previous result in Eq. 27 over the width of the current

layer ψ ∈ [ψa, ψb]. In fact, one can integrate over both roots at the same time. The indefinite

integral is

A′ =
∫
dψ

∫ ∞
0

dx′

x′
(kxx

′)im∗−1 log (x′2 − zx′ + iψ). (30a)

Integration over ψ leads to

A′ = −i
∫ ∞

0

dx′

x′
(kxx

′)im∗−1×

(x′2 − zx′ + iψ) log (x′2 − zx′ + iψ). (30b)

In this form, one can factor the argument of the logarithm over the roots z±. For each

factor, one can then determine

A′m∗(z±) = −ikx
∫ ∞

0

dx′(kxx
′)im∗−1×

(x′2 − zx′ + iψ) log (x′ − z±) (31a)

=
π(−kxz±)im∗

sinh (m∗π)

(
(−z±)2

im∗ + 2
− zz±
im∗ + 1

+
iψ

im∗

)
(31b)

= − π(−kxz±)im∗

(im∗ + 1) sinh (m∗π)

(
(−z±)2

im∗ + 2
− iψ

im∗

)
. (31c)

Note, however, that due to Eq. 30a the contribution from the complex conjugate root is

B′m∗(z̄±) ≡ −A′m∗(z̄±,−ψ). The indefinite integral for the vector potential is the sum

Ã(ψ) =
B̃legrt

2π
Re
∑
σ=±

ei(nζ+χ)
[
A′m∗(zσ) + B′m∗(z̄σ)

]
. (32)

Outside of the current layer, the answer is a simple difference between indefinite forms

Ã‖ = Ã(ψb)− Ã(ψa). In the far-field, r2 > 4ψ, one finds that z± → z, iψ/z, which yields the

limits for the leg

A′m∗(z+)
∣∣ψb

ψa
' (ψb − ψa)

(
π(−kxz)im∗

m∗ sinhπm∗

)
(33a)

and for the SOL

A′m∗(z−)
∣∣ψb

ψa
' ψ

im∗ + 1

(
π(iz/kxψ)−im∗

m∗ sinhπm∗

)∣∣∣∣ψb

ψa

. (33b)
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For a thin current channel, the magnitude of the separatrix contribution is the same as that

of the leg. For wide separations, ψb >> ψa and the inner point can be neglected. Hence,

the far-field SOL perturbation is smaller by ∼ 1/
√

1 +m2
∗ for distributions thicker than the

coherence width.

Within the current layer, the Green’s function has a branch cut when the radial position

xy is equal to the value of ψ in the layer. The nonzero jump across the layer produces the

particular solution that satisfies ∇2A 6= 0. The integral over ψ must actually be defined by

the principal part across the branch cut

P
∫ ψb

ψa

=

∫ ψb

ψ+

+

∫ ψ−

ψa

(34a)

where ψ± = limε→0+ xy ± ε. In the current layer, this yields the result

Ã‖ = Ã
∣∣∣ψb

ψa

− Ã
∣∣∣ψ+

ψ−
. (34b)

The magnetic field is again found by differentiation. There are now quite a few more terms

that must be summed to yield Fig. 4 (b) and (c).

IV. NEAR SEPARATRIX SPECTRUM

A. Definition in canonical coordinates

The Fourier spectrum of the perturbation in canonical coordinates is needed for the

determination of the resonant components of the spectrum. The first step is to define a new

set of canonical coordinates with a poloidal angle that is normalized to 2π, and this, in turn,

requires an estimation of the safety factor for field lines inside of the separatrix. The leading

dependence of the safety factor on the radial distance from the separatrix is logarithmic and

the leading term only requires the field line motion in X-point region. Assume that the field

line begins at the point y = −x =
√
|ψ|. In order to travel half of a poloidal circuit, the

field line must travel to a point y = b which we estimate to be on order of the minor radius

a. The toroidal angle traversed in this process can be expressed as ∆ζ = q∗ log (b/
√
|ψ|).

This yields the safety factor of the near-separatrix trajectory

q = 2∆ζ/2π = (q∗/2π) log (|b2/ψ|). (35)
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The next order term is a constant that depends on the contribution of the region far from

the X-point. In general, b can be redefined to make this expression accurate to order unity

by absorbing this constant. We call this distance “the separatrix scale length.” Even in the

case of multiple X-points, this expression for q can be made exact up to order unity by

taking the average of the q∗’s for each X-point and an appropriate choice of b (see Ref. [31]).

Given the safety factor, one can define canonical action-angle coordinates along separatrix

via the near X-point forms

Θ = θq∗/q = (q∗/q) log
√
|y/x| (36a)

Ψt =

∫
qdψ/q∗ = (ψ/2π)(log |b2/ψ|+ 1) (36b)

In these coordinates, the Jacobian satisfies J = 1/(∇Ψt × ∇Θ) · R∇ζ = 1. Here, Θ is

the poloidal angle and Ψt is the normalized toroidal flux near the X-point since dΨp/dΨt =

dζ/dΘ = q.

The Fourier harmonics of the normal field perturbation can be defined by the surface

integral

B̃mn =

∮
ei(nζ−mΘ)B · d2a/S (37)

where S =
∮
|d2a| ' (2π)2aR is the area of the flux surface. Note that exponential Fourier

harmonics are a factor of 1/2 smaller than the sin and cosine harmonics used in Refs.

[20, 21, 23, 24].

The normal field is simply related to the perturbed poloidal flux via JB · ∇Ψ = ∂ΘAζ .

If we define

Ãmn =

∮
ei(nζ−mΘ)Ã‖dΘdζ/(2π)2 (38)

then

B̃mn = im
(2π)2R

S
Ãmn '

im

a
Ãmn. (39)

Note that, for a given resonant perturbation in normal field, the perturbed potential Ãmn ∼

1/m ∼ 1/nq, and thus must vanish as q →∞ as the separatrix is approached.

Which part of the trajectory contributes most to the resonance in the definition of the

resonant spectrum in Eqs. 37 and 38? The answer is unique, but can appear to raise a

paradox when switching between coordinate systems and definitions. The simple answer

is that, near the X-point, the differential area element, d2a = x̂dydz − ŷdzdx, is equally

16



sensitive to a given normal field as any other part of the flux surface. However, in canonical

coordinates, the area element is d2a = ∇ΨJ dΘdζ, and, because |∇ψ| ∼ r, the area ele-

ment now appears to be weighted more heavily at positions further from the X-point. By

definition, the Jacobian J is non-singular in canonical coordinates and requires no special

treatment near the X-point. Of course, in real space this weighting is canceled by the fact

that dΘ ∝ d`p/Bp ∝ d log |x/y|. The same considerations hold true for the definition that

involves the vector potential. It is clear that dΘ represents uniform weighting in magnetic

coordinates, while, in real space, the X-point appears weighted more heavily. This apparent

paradox is resolved by the fact that the vector potential is always one power of r larger than

the field. For instance, due to gauge freedom Aζ(ζ) does not generate a magnetic perturba-

tion, and the first contribution comes from terms that scale as r. Thus, the two definitions

are equivalent.

For a generic perturbation, given the magnetic field in the neighborhood of a specific

point, it is only possible to obtain a rough estimate for the flux surface average. In order to

see the effect of a generic perturbation near the X-point, Taylor expand the vector potential

in terms of the powers xjyk and drop the irrelevant constant gauge term. In the vicinity of

the X-point, xy = ψ and dΘ = (q∗/q)dy/y, so that∫
xjyke−imΘdΘ =

q∗
q

∫
xjyk−1 |x/y|im∗/2 dy (40a)

=

(
q∗
q

)
|x/y|im∗/2xjyk

−im∗ + (k − j)
(40b)

where m∗ = mq∗/q. The result yields two conclusions. First, because the denominator is

complex, it never vanishes unless both |m∗| and |k− j| become small. This implies that the

field is broad-band and never achieves a true resonance. Second, the result is clearly largest

in magnitude at points far from the X-point, and thus, the result must depend on how the

perturbation behaves further away.

A localized current distribution decays far from the source, and allows one to construct an

approximation that is valid over the entire trajectory. The spectrum produced by a current

source localized near the X-point is determined in the next section. The case of the parallel

SOL surface current is similar in that it is largest near the X-point due to the dependence

on flux expansion. Section IV C shows that the average is enhanced due to resonance effects

and can be determined to within logarithmic accuracy.
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B. Spectrum for an X-point localized source

Consider the spectrum of a source that is localized near the X-point. For instance, each

lobe of current of the same sign produced by the current drive at the target has total

parallel current Ilobe = Ksatrt/m∗ (Part I, Eq. 26a). Neglecting interference with the other

lobes, what is the field produced by such a current source near the X-point? Assume that

the observation point is far enough away that the detailed structure of the current can be

neglected, but that the current paths close sufficiently far away that the fields decay as 1/r.

Then, the main contribution will be the monopole contribution for the current In in the

nth Fourier harmonic. If the source is located at position {xj, yj}, the contribution of the

harmonic to the perturbed vector potential is

Ãn = −(In/c)e
−i(nζ+χj) log[(x− xj)2 − (y − yj)2]. (41)

Since the field field far from the X-point is weak, the near X-point behavior will determine

the perturbation spectrum. Under these assumptions, the characteristic field at distance a

is

B̃n = 2In/ca. (42)

The closed field lines are in the region x < 0, y > 0. However, one can define the integral

in any quadrant by keeping track of the quadrant that the test field line is in. Hence,

we introduce the sign of the field line quadrant σx = ±1, σy = ±1, so that the path of

integration takes place along z = ρ(σx/t + iσyt), where ρ =
√
|ψ| and t parameterizes the

path. For closed field lines σy = −σx = 1. The spectral decomposition in straight field line

coordinates is

Ãmn = −Ine
−iχj

2πc

q∗
q

∫ ∞
0

dtt−im∗−1×

log
[
(ρt− σyyj)2 + (ρ2/t− σxxj)2

]
. (43)

This integral is in the same form as Eq. 27. Here we define the two solutions for y of

y2 − wjy − iρ2 to be

wj± = rj±e
iϑj± = wj/2±

√
(wj/2)2 + iρ2. (44)

where wj = σyyj − iσxxj represents the source position modified by the signs of the flux

18



surface quadrant. The result is

Ãmn = −Ine
−iχj

2cm

∑
σ=±

(−wjσ/ρ)−im∗ + (−w̄jσ/ρ)−im∗

sinhm∗π
(45a)

= −Ine
−iχj

cm

∑
σ=±

coshm∗ϑjσ
sinhm∗π

(
rjσ
ρ

)−im∗
(45b)

with the definition m = m∗q/q∗. The flux surface averaged normal magnetic field amplitude

is

B̃mn = −iIne
−iχj

ca

∑
σ=±

coshm∗ϑjσ
sinhm∗π

(
rjσ
ρ

)−im∗
. (46)

The RMP amplitude is given by the value at m∗ = q∗n which is equivalent to m = qn. Near

the separatrix, as ρ→ 0, the σ = + contribution is from the outer SOL and rj+/ρ→ rj/ρ,

while the σ = − contribution is from the inner SOL and rj−/ρ→ ρ/rj.

The spectrum is broadband due to the spatial localization of the source. The spectrum

decays quickly at large m∗ unless the source is close to one of the separatrix branches. Given

a source at rj = 1 and a field line at ψ = 10−2, Fig. 5(a) plots the amplitude of |B̃mn/B̃n|

versus m∗ for unit current, and a variety of source locations: x = 1, y = 0 (dotted red);

x = 0, y = 0 (dashed blue); and x = 0, y = 1 (solid black). One can clearly see that a

more sizable effect is obtained as yj is raised from far below the X-point where ϑj+ ∼ 0 to

far above the X-point where ϑj+ ∼ ±π. Even when ϑj+ = ±π, ϑj− = ±π/2 resulting in a

negligible contribution from the other side of the trajectory.

The preceding formula in Eq. 46 implies that at large m∗, the perturbation field only

efficiently resonates with one of the sides of the separatrix. This yields half the characteristic

field Bn as m → ∞, as confirmed by the asymptote 1/2 for the solid (black) curve in Fig.

5(a). Given the lobe current expression, this leads to the upper limit for the RMP due to

the lobe current B̃nm,lobe < Bsatrt/m∗a, which is only fraction of the original maximum. Of

course, the actual value is even further reduced, because the upper limit does not account

for phase interference from the other lobes.

C. Spectrum for the SOL current source

The field produced by the SOL current density is largest near the X-point and localized

in Fourier space. This leads to a logarithmic enhancement of the resonant field over the

previous result that can become large near the separatrix. Just as in the determination of
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the q profile, the leading dependence of the RMP amplitude is determined by the near X-

point field. Although the answer does depend on the properties of the separatrix at further

distances where the field is weaker, the effect is to set the next order term, and redefine

the scale of the argument of the logarithm. Here, we estimate that this scale is set by the

separatrix scale length b, just as it was for the q profile.

The spectrum for an arbitrary current distribution is determined by a sum over thin

current channels. Again, we introduce the signs σx = ±1, σy = ±1, so that the path of

integration takes place along the path z = σxρ/t+iσyρt, where ρ =
√
|ψ| and t parameterizes

the path. The spectrum should be integrated up to a distance on the order of the separatrix

scale length b in either direction. In the case of a thin current channel, the vector potential

was written as a sum over the roots z±. Similarly, the spectrum can be written as a sum

Ãmn =
B̃0rt
2m

e−iχ
∑
σ=±

R−m′∗m∗ (kxzσ) +R−m′∗m∗ (kxz̄σ) (47a)

B̃mn =
B̃0rt
2a

ie−iχ
∑
σ=±

R−m′∗m∗ (kxzσ) +R−m′∗m∗ (kxz̄σ) (47b)

over the spectral response functions

Rm′∗
m∗(z±) =

∫ t0

t−1
0

(−z±)im
′
∗

sinhm′∗π
t−im∗dt. (47c)

Here, t0 = b/ρ, m′∗ = nq∗ andm∗ = mq∗/q; for an exact relation, one must use a ≡ S/(2π)2R.

These expressions are numerically integrated below in order to find the dependance of the

spectrum on the position of the current source δψ.

To gain analytic insight, consider field lines located at distances greater than rX =
√

2δψ

from the X-point. At this distance, Eq. 12 is a good approximation for the vector potential

and using the efficiency naturally allows one to treat the SOL and divertor leg contributions

separately. The largest contribution arises from the SOL contribution to the perturbation

and can be expressed as

B̃sol
mn =

B̃solrt
2a

ie−iχ
(
Rm′∗
m∗(ikyz) +Rm′∗

m∗(−ikyz̄)
)
. (48)

The SOL spectral response function is

Rm′∗
m∗(−ikyz) = (kyρ)im

′
∗

∫ t0

t−1
0

(iσx − σyt2)
im′∗

sinhm′∗π
t−iµ∗−1dt (49)

where µ∗ = m∗ +m′∗. The integral in Eq. 49 evaluates to
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Rm′∗
m∗(−ikyz) =

(kyρ)im
′
∗

sinhm′∗π

(
σy
iσx

)iµ∗/2
fm′∗(iz) B

(
σy
iσx

t2;−iµ∗
2
, 1 + im′∗

)∣∣∣∣t0
t−1
0

(50a)

where B(z; a, b) is the incomplete beta function. Due to the imaginary exponents, proper

handling of the complex phases requires the factor

fm′∗(iz) =
(
iσx − σyt20

)im′∗ (1− σyt20/iσx)−im′∗ . (50b)

Using the limiting forms of the incomplete beta function for large and small z, the result

can be approximated as

Rm′∗
m∗(−ikyz) ' (kyρ)im

′
∗

sinhm∗π

(
iσy
σx

)iµ∗/2
fm′∗(iz)

{
Γ (−iν∗/2) Γ (−iµ∗/2)

2Γ (−im′∗)
+

1

iν∗

(
iσy
σx
t20

)iν∗/2
+

1

iµ∗

(
iσy
σx
t−2
0

)−iµ∗/2}
(51)

where ν∗ = m∗ −m′∗. The first two terms in braces in Eq. 51 are due to the effect of the

perturbation on the separatrix close to the SOL current, over the range |y/x| > 1. The last

term is due to the perturbation on the opposite side of the separatrix, far from the SOL

current, over the range |x/y| < 1.

The oscillation of the current pattern can now resonate with the field line motion on the

outer SOL side of the separatrix to create a large amplitude effect. If m∗ → m′∗ = nq∗ then

the limits Γ[x]→ 1/x and (zx − 1)/x→ log z as x→ 0, yield

Rm∗
m∗(ikyz) ' 1

2

(
iσy
σx

)im∗
(iσxkyρ)im∗ log

(
iσyt

2
0

σx

)
. (52)

Substituting this approximation into the expression for the resonant component yields the

RMP estimate due to the SOL current

B̃sol
m=qn '

B̃solrt
a

ie−iχ (kyρ)im∗
coshm∗π

sinhm∗π
log (b/ρ). (53)

The divertor leg contribution can be expressed as

B̃leg
mn =

B̃legrt
2a

ie−iχ
(
R−m′∗m∗ (kxz) +R−m′∗m∗ (kxz̄)

)
. (54)

The spectral response function can be obtained from Eqs. 49 and 50 with the replacements

σx → −iσx, σy → −iσy, ky → kx, and m′∗ → −m′∗. The resonance with the field line motion

21



on the outer SOL side of the separatrix is weak ∼ 1/ sin πm∗ at large m∗. In fact, the

integral over the inner separatrix now yields a peak on the nonresonant side of the spectrum

for m∗ → −m′∗ = −nq∗ where

Rm∗
m∗(kxz) ' −1

2
(−iσykxρ)im∗ log

(
iσy
σxt20

)
. (55)

This leads to a non-resonant peak due to the divertor leg current

B̃leg
m=−qn '

B̃legrt
a

ie−iχ (kxρ)−im∗
coshm∗π/2

sinhm∗π
log (b/ρ). (56)

This contribution is smaller than the SOL term at large m∗ by the factor exp(−|πm∗/2|)

and has the same reduction found in Sec. IV B for a source that is poloidally localized on

the x-axis. Thus, at large m∗, the divertor leg contribution for long divertor legs is negligible

compared to the SOL contribution.

The estimate for the amplitude of the resonant spectrum can now be improved over the

rough estimate B̃nm = εB̃sat, where ε is the appropriate current drive efficiency. Near the

separatrix, the surface averaged RMP has the characteristic behavior

B̃res = εB̃sat(rt/a) log (b/ρ) (57)

as ρ/b→ 0. The magnitude is smaller by the factor rt/a, just as in the case of the poloidally

localized perturbation. However, in the case of the SOL current, the result is enhanced by

the logarithmic factor log (b/ρ). For field lines near the separatrix, the enhancement will

cancel the reduction and the two factors will determine a correction of order unity.

The full expression for the RMP amplitudes depend on the flux surface position ρ/b and

the current source position δψ/ψ. This dependence typically leads to decreased amplitude

at large m∗, but the corrections are weak for parameters of interest. To illustrate the

detailed behavior of the results, Fig. 5(a) plots the normalized SOL current generated

RMP amplitude B̃sol
nm/B̃res versus the poloidal test harmonic m∗. In this figure, the poloidal

dependence of the current source has been set to m′∗ = nq∗ = 3, kx = ` and ky = `/ψ.

The flux surface positions are ρ/b = 10−1, 10−2, 10−3 which yield the enhancement factors

2.3, 4.6, 6.9. Fig. 5(b) plots the normalized divertor leg current generated RMP amplitude

B̃div
nm/B̃res versus the poloidal test harmonic m∗ for the same parameters. The result is

now peaked on the nonresonant side near m∗ = −3, but the scale is now on the order of

cosh (1.5π)/ sinh (3π) = 8.98× 10−2.
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The flux surface averaged resonant spectrum is shown for all m∗ = m′∗ = nq∗ in Fig.

6(a) for the analytic SOL expression (thick lines, Eq. 48) and the divertor leg contribution

(thin lines, Eq. 54). This corresponds to current right on the separatrix δψ = 0, and the

flux surfaces ρ/b = 10−1, 10−2, 10−3. The contribution from the SOL clearly dominates at

large m∗, while the contribution from the divertor leg is equivalent in magnitude at low m∗.

Finally, to explore the dependence on the current position δψ, Fig. 6(b) plots a numerical

integration of the full expression in Eq. 47b for ρ/b = 10−2 and −δψ/ψ = 0.1, 1, 10. The

results are reduced at large m∗ by a factor close to unity.

V. STOCHASTIC TRANSPORT

It is important to understand the consequences of a possible region of stochastic magnetic

field at the edge of the plasma. However, the method in which the RMP-ELM controlled

plasmas respond to the applied resonant field to produce the observed enhancement of

particle transport still requires explanation [23, 24]. For tearing activity that might occur

during the non-ideal stages of an internally generated instability, the results in this section

can be a good order of magnitude estimate of the stochastic layer that forms. In a rotating

plasma, externally applied fields cannot easily excite stable tearing modes and reconnection

cannot occur for small amplitude fields [25, 26]. Instead, the applied fields excite ideal

internal kink modes and this changes the effective resonant spectrum in a manner that

depends on ideal MHD stability [27, 28].

The Fourier harmonics of the vector potential that resonate with the field line motion

determine the size of the islands that form, and, when the islands overlap, the size of the

chaotic region. For any radial coordinate s, the initial poloidal flux must be of the form

Ψp(s) and the safety factor must be of the form q(s). If a perturbation to the poloidal flux

δΨp = −RÃ · dx/dζ ' −Ã‖R acts to create an island, one can find a new constant of the

motion by passing to the helical reference frame of the island where m = qn. For a thin

island, the new constant is approximately

−Ψ̄p =
Ψ′pq

′

2q
s2 + 2|Ãmn|R cos(mΘ− nζ + χmn) (58)

where q′ = dq/ds, Ψ′p = dΨp/ds. Here, Ãmn is the amplitude of the (exponential) Fourier
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series for the perturbation and χmn is the phase. The full island width can be computed via

δs = 4

√√√√∣∣∣∣∣2qRÃmnq′Ψ′p

∣∣∣∣∣ = 4

√√√√∣∣∣∣∣2aB̃mn

nq′Ψ′p

∣∣∣∣∣. (59)

For this last expression, the appropriate minor radius is a = S/(2π)2R.

The island sizes take a finite limit δrX = δψ/rX when expressed in terms of distance from

the X-point rX =
√

2ψ. Near the separatrix dq/dψ = −q∗/2πψ, dΨp/dψ = B′pR = Bt/q∗,

and the product q′Ψ′p = Bt/2πψ. This yields the island size in flux space

δψ = 8

√√√√∣∣∣∣∣πψqRÃmnBt

∣∣∣∣∣ = 8

√√√√∣∣∣∣∣πψaRn B̃mn

Bt

∣∣∣∣∣. (60)

Stochasticity occurs close to the point when islands overlap, so that |nq′δψst| = 1 or δψst =

|2πψ/m∗|. This yields the estimate for the size of the stochastic overlap region

δψst = 4

√√√√∣∣∣∣∣m2
∗
π

qRÃmn
Bt

∣∣∣∣∣ = 4

√√√√∣∣∣∣∣m∗aq∗Rπ

B̃mn

Bt

∣∣∣∣∣. (61)

In order to determine the relative size of the stochastic region, the results must be nor-

malized to the total poloidal flux contained within the separatrix Ψsep = aRBp/2. The

normalized poloidal flux near the separatrix is Ψp/Ψsep ' 2B′pψ/Bpa = 2ψ/rpa, where, here,

the poloidal field scale length is defined by the relation rp = Bp/B
′
p. For B̃mn/Bt = 10−4,

one obtains a stochastic region on the order of a few percent normalized flux.

In order to estimate the amount of transport produced by the perturbation, one can use

the quasilinear approximation for field line diffusion [33]. The quasilinear diffusion coefficient

dfl = 〈∆r2/∆`〉 /2 caused by a large number of poloidal harmonics at each toroidal harmonic

n is

dfl = 2πqR
∞∑
n=0

∣∣∣B̃mn/Bt

∣∣∣2 δm=qn. (62a)

For ITER-like parameters qa = 3, R = 620 cm and B̃mn/Bt = 10−4, we find that dfl = 1.2

mm2/m. In the pedestal, where Tped ∼ 5 keV, the transport will be collisionless. In fact,

transport in the SOL where the density is reduced to ne ∼ 1013 cm−3 will be still be

approximately collisionless for electrons at Tsol ∼ 100 eV (see estimates in Ref. [23]). Thus,

to find an order of magnitude estimate of the particle diffusion caused by the stochastic
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field, one can use the simple collisionless result [34] D = dflvt. For ions with vti ∼
√

2T/mi,

this estimate yields Dped ∼ 8× 103 cm2/s and Dsol ∼ 1× 103 cm2/s. These levels are of the

correct order of magnitude to compete with neoclassical and turbulent particle transport at

the edge of an H-mode plasma. On the other hand, collisionless electron diffusion yields an

estimate of enhanced thermal conduction χ ∼ dfl
√

2T/me so that χped ∼ 5×105 cm2/s and

χsol ∼ 7 × 104 cm2/s. Such an enhancement of electron thermal conduction is apparently

unobserved in experiments at DIII-D [18, 23] and JET [19]. This is quite an important

result, because the resonant perturbation technique would otherwise produce far too much

heat transport.

VI. DISCUSSION & SUMMARY

In Part I (Ref. [4]), the SOL of a high-power tokamak was shown to support an apprecia-

ble coherent current both along the divertor leg and in the SOL. Even after quantitatively

accounting for destructive phase interference, this current is large enough to drive a signifi-

cant magnetic perturbation along the separatrix. It was proposed that, after optimizing the

biasing geometry to enhance the SOL current, this field could be used to control the edge

pressure gradient and achieve the goal of stabilizing ELMs in a high-performance tokamak

plasma. The key to this conclusion requires the field to have a large enough flux surface

averaged resonant spectral component to achieve the experimentally measured threshold.

In this article, the perturbed vector potential near the X-point was derived in closed

form for a divertor with long divertor legs using the slab approximation for the Green’s

function of the Laplace operator. The perturbed magnetic fields were then calculated from

these expressions. The effect of phase mixing for the wide current channels with a step-

wise constant amplitude was shown to be well-aproximated by the far-field of a thin current

channel with different surface current densities along the leg and in the SOL. In agreement

with the asymptotic form of the coherent SOL current calculated in Part I, phase interference

reduces the perturbation by the factor 1/
√

1 +m2
∗ for current channels as wide as the

coherence width.

The dependence of the resonant spectrum on the flux surface and current source positions

was calculated asymptotically close to the separatrix. Only the near X-point behavior was

needed because the perturbation fields that were considered decreased further away. For a
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source that is localized near the X-point, raising the source from below the X-point near

the divertor legs to above the X-point near the SOL produces a much larger effect at large

m∗. The SOL current was found to generate a relatively large resonant component over a

region near the plasma edge. For the SOL current, the perturbation spectrum is peaked for

modes that resonate with the pitch of the current source. Thus, as long as the SOL current

is well-aligned with field lines inside the separatrix, this resonant enhancement amplifies the

result by a logarithmic factor that can become large near the separatrix. A more accurate

estimate for the SOL perturbation is B̃sol
mn = B̃sol(rt/a) cothm∗π log (b/ρ). More detailed

results are given in Sec. III.

The RMP is large enough to potentially generate a sizable stochastic edge layer (without

consideration of plasma shielding or amplification). If a stochastic layer is driven one should

ask whether the parallel current would still generate a coherent perturbation as it travels

along the chaotic field lines. For short line lengths, less than a single poloidal turn around the

plasma, the field lines follow well-behaved invariant manifolds [23] that do not experience

chaotic motion. Here, it was found that the region near the X-point can be sufficient to

generate a sizable perturbation. Thus, even if the fields become stochastic, the effect will

persist as long as the region near the original X-point retains enough plasma to carry the

parallel current.

In conclusion, significant magnetic perturbation effects should be observable if the di-

vertor target plates of a high-power tokamak are biased in a toroidally asymmetric fashion.

This analysis has shown that one can generate a large magnetic perturbation field near the

X-point, and, with optimization of the biasing geometry, a sizeable SOL current and flux

surface averaged RMP. In the future, it would clearly be of interest to simulate the SOL

current generation of the RMP field for the finite aspect ratio geometry of a fully shaped

toroidal plasma using realistic parallel current distributions. It may be possible for the inter-

nal SOL current technique to generate enough RMP amplitude to reduce the edge pressure

gradient to the point of ELM stabilization.
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Appendix A: Contour integral

The expression for the vector potential in Eq. 13c can be evaluated using contour inte-

gration in the complex plane. The required integral is

I =

∫ ∞
0

dzza(z − w)−1. (A1)

This integral is also the subject of Appendix C for nontrivial limits of integration. We

assume that Im (w) 6= 0 and Re (a) < 0, and take the limit that Re (a) → −0. Here, the

branch cuts for z and w are assumed to lie along the negative real axis, as usual. Multiplying

by (−1)a(−1)−a then allows us to rotate the branch cut of the integrand to the positive real

axis. Now, to evaluate the integral, utilize the so-called “keyhole” contour shown in Fig. 7.

Integrate from 0 to∞ along the real axis, circle the contour once around the Riemann sheet

at infinite radius, and then close the contour by integrating back along the real axis from

∞ to 0, and circling the origin. This contour only encloses the pole at z = w; hence, the

residue theorem yields

2πi(−w)a =
(
e−iπa − eπia

)
I (A2a)

I = −π(−w)a/ sin πa. (A2b)

Appendix B: Magnetic field in complex coordinates

In this section, the result in Eq. 20a is derived in complex coordinates: z = x + iy and

z̄ = x− iy. For any function ∇A = ∂zA∇z + ∂z̄A∇z̄. However, in complex coordinates the

the metric is completely off diagonal: (∇z)2 = 0 and |∇z|2 = 2. The cross-product obeys

the relation ∇z × ζ̂ = i∇z.

Given these simple complex definitions, the magnetic field B = ∇×A = ∇× Aζ̂ is

B = i∂zA∇z − i∂z̄A∇z̄. (B1)

The Cartesian components are

Bx − iBy = B · ∇z̄ = 2i∂zA. (B2)
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The magnetic field can be computed in the coordinates ψ + iτ = −iz2/2 by taking the

contravariant component

Bψ − iBτ = B · ∇(iz̄2/2) = −2z̄∂zA. (B3)

This leads directly to the normalized result in Eq. 20a.

Appendix C: Fields for finite divertor leg length

If the divertor target is close enough to the plasma, there are additional perturbations to

the magnetic field due to the flow of current near the target. In this section, these additional

terms will be treated by deriving a more exact expression for the vector potential. Local

fields are modified and could potentially increase the perturbation strength for short divertor

legs. If the current paths close near the divertor target, the magnetic field will decay more

quickly than 1/r at large distances. Note that at distances from the source that are further

than a toroidal wavelength 2πR/n, the slab approximation will be violated, and the fields

will decay as higher multipoles at even faster rates.

Possible long-range terms formally arise from the “endpoints” of the current distribution

in the expressions for the vector potential. For instance, in passing from Eq. 17b to Eq. 18,

a total derivative term is required to complete the integration by parts, and this term is to

be evaluated on the target and near the separatrix. The term that contributes to Eq. 17b

or, more generally, to Eq. 27b is

Am∗(z) = −
∫ xt

0

dx′

x′
(x/xt)

im∗ log (x′ − z). (C1)

where xt = ` for long legs and xt =
√
δψ for short legs. Integration by parts allows one

to express the result as the sum Am∗(z) = At(z) +A′m∗(z) where At(z) is the contribution

from the total derivative and A′m∗(z) is the remaining integral.

The integral can be evaluated in closed form in terms of the hypergeometric function

F (a, b; c; z). The result is

A′m∗(z) = − 1

im∗

∫ xt

0

dx′ (x/xt)
im∗ (x′ − z)−1 (C2a)

= − xt/z

im∗(1 + im∗)
F (1, 1 + im∗; 2 + im∗;xt/z) (C2b)

=
π(−z/xt)im∗
m∗ sinhπm∗

+
1

m2
∗
F (1,−im∗; 1− im∗; z/xt) (C2c)
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and gives a correction to the perturbation near the target plate due to the fact that the

current path changes there. The second line shows that all terms decay quickly at large

xt/z. The first contribution is actually the dipole B̃ ∼ 1/r2 term. The last line rewrites the

integral as
∫ xt

0
=
∫∞

0
−
∫∞
xt

to exhibit the answer as a sum of the principal term that was

retained (z/xt)
im in Secs. III and IV and a power series in distance from X-point z/xt that

becomes small as xt >> r.

The total derivative leads to a possible 1/r term at the endpoints. The contribution from

0 arises when the current formally flows to y → ∞, producing negligible field. Thus, one

only needs to consider the term at x = xt:

At(z) =
1

im∗
(kxxt)

im∗ log (xt − z). (C3)

Notice that these term are actually out of phase with the parallel current by π/2 unlike the

contribution from A′ above.

However, there can be a near cancellation at the divertor target plate. At the target,

the actual distribution of toroidal current does not simply vanish, but the current paths

must close. If direct electrostatic biasing is considered then one must include the physical

path in which the actual engineering design feeds and busses supply current to the target

region. The simplest such arrangement requires a surface current to flow toroidally along

the divertor target itself in order to close the poloidal component of the parallel current

density. This is also the natural flow pattern for a thin current channel when generated

by internal asymmetries in geometry and thermoelectric potential. Consider a thin surface

current density of magnitude K‖ flowing above the target at location xt and yt, so that

in the plasma Jplasma = K‖b. In order for a toroidal current flowing along the target

Jtarget = Jtδ(x − xt)δ(y − yt)ζ̂ to close the current path via ∇ · (Jtarget + Jplasma) = 0,

the target current density must take the form Jt = −K‖xt/im∗. This current is π/2 out

of phase with the plasma current and produces a perturbation that exactly cancels the

endpoint contribution arising from Eq. C3.
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FIG. 1: The divertor region near the X-point: the x-axis lies along the outer divertor leg (lower

separatrix branch) and the y-axis lies along the outer SOL (upper separatrix branch).
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(a) (b) (c)

(a) (b) (c)

FIG. 2: (Color online) Perturbation fields far from the separatrix for a narrow current layer (B̃leg =

B̃sol): (a) vector potential, (b) normal magnetic field, (c) tangential magnetic field. Parameters

are m∗ = 4.5, `/δr = 25; arbitrary units.
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(a) (b) (c)

FIG. 3: (Color online) Perturbation fields close to the separatrix for a narrow SOL current density

profile: (a) vector potential, (b) normal magnetic field, (c) tangential magnetic field. Parameters

are m∗ = 4.5, `/δr = 25; same color scale as Fig. 2.
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(a) (b) (c)

FIG. 4: (Color online) Perturbation fields close to the separatrix for a wide SOL current density

profile for the case of a single coherence width: (a) vector potential, (b) normal magnetic field, (c)

tangential magnetic field. Parameters are m∗ = 4.5, `/δr = 25; same color scale as Fig. 2.
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FIG. 5: (Color online) The flux surface averaged normal magnetic field perturbation spectrum

B̃nm versus m∗. (a) Near X-point current source normalized to B̃n = 2Ij/ca for ψ = 10−2 and

source locations zj = i (solid black), 0 (dashed blue), 1 (dotted red). (b) SOL surface current with

nq∗ = 3 on the separatrix (Eq. 48) normalized to B̃res (Eq. 57) averaged over flux surfaces at

ρ/b = −10−1,−10−2,−10−3. (c) Divertor leg surface current on the separatrix (Eq. 54) for the

same parameters.
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FIG. 6: (Color online) The flux surface averaged RMP spectrum B̃n=qm generated by the SOL

and divertor current perturbations normalized to B̃res (Eq. 57). (a) Analytic expressions for a

current source on the separatrix δψ = 0; SOL contribution (thick lines, Eq. 48) and divertor leg

contribution (thin lines, Eq. 54 ); ρ/b = 10−1 (solid black),10−2, (dashed blue), 10−3 (dotted red).

(b) The total numerically integrated resonant spectrum Eq. 47b for ρ/b = 10−2 and −δψ/ψ = 0.1

(solid black), 1 (dashed blue), 10 (dotted red).
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FIG. 7: The keyhole contour in the complex plane used to evaluate the integral in Eq. A1.
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